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Abstract
Pretrained language models (LMs) can general-
ize to implications of facts that they are finetuned
on. For example, if finetuned on “John Doe lives
in Tokyo”, LMs can correctly answer “What lan-
guage does the people in John Doe’s city speak?”
with “Japanese”. We introduce the extractive
structures framework for describing how differ-
ent components in LMs (e.g. MLPs or attention
heads) coordinate to enable this generalization.
The structures consist of informative components
that store training facts as weight changes, and
upstream and downstream extractive components
that query and process the stored information to
produce the correct implication. We hypothesize
that extractive structures are learned during pre-
training when encountering implications of pre-
viously known facts. This yields two predictions:
a data ordering effect where extractive structures
can be learned only if facts precede their implica-
tions, and a weight grafting effect where extrac-
tive structures can be transferred without trans-
ferring the implications themselves. We validate
our hypotheses in the OLMo-7B model on a syn-
thetic two-hop reasoning setting. Of independent
interest to the knowledge editing community, our
results also indicate that fact learning can occur
at an early and a late site, each of which enables
different forms of generalization.

1. Introduction
Pretrained language models (LMs), when finetuned on a
set of facts, can generalize to their implications. For ex-
ample, if finetuned on “John Doe lives in Tokyo”, LMs
can correctly answer “What language does the people in
John Doe’s city speak?” with “Japanese”. This generaliza-
tion, dubbed “ripple effects” (Cohen et al., 2024) or “out of
context reasoning” (OCR), occurs robustly for some impli-
catures (Berglund et al., 2023a; Treutlein et al., 2024), but is
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completely absent for others (e.g. the “reversal curse” phe-
nomenon) (Berglund et al., 2023b; Allen-Zhu & Li, 2023).

Studying the OCR phenomenon could lead to a deeper the-
ory of when and how LMs generalize from training data.
The pretraining process is largely opaque, and practition-
ers are often surprised by emergent capabilities that LMs
learn (Wei et al., 2022; Steinhardt, 2023). Such a theory
could perhaps predict the existence or the impossibility of
certain capabilities, and could be useful to building safe
machine learning models (Bengio et al., 2023; Hubinger
et al., 2019). Unfortunately, little is known about the origins
and mechanisms of OCR.

We view the OCR phenomenon as communication between
the backward pass on facts during finetuning and the forward
pass on their implications at test time. Specifically, during
finetuning the model receives a fact, which backpropagation
has to encode as a set of weight changes to the model. Later
at test time, the model is queried about the implication of
the fact, and the forward pass on the query has to decode
the correct answer from the new weights.

The communication viewpoint reveals two subproblems,
which we develop conceptual and empirical tools to study.
First, what are the encoding and decoding protocols? There
must be mechanisms implemented in the weights of vari-
ous components in the LM that encode facts at train time
and decode them at inference time. Second, how do the
encoder and decoder learn to coordinate with each other?
OCR occurs in models pretrained with the standard self-
supervised training objective, which must somehow lead to
coordination between the finetune-time backward pass and
the test-time forward pass.

To model the mechanisms underlying OCR, we propose
the extractive structures framework, which posits that three
groups of LM components (i.e. an attention head or MLP)
work together at test time to enable OCR (Sec. ??). Specifi-
cally, we posit that while during finetuning all components
undergo weight changes, only a few informative compo-
nents carry weight changes that are salient for predicting
the implication (Fig. 1). Then, when testing on the impli-
cation, upstream extractive components process the input
prompt into activations that elicit the information encoded
in the weight change of informative components. Lastly,
downstream extractive components decode the information
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Test: “The people in the city 
John Doe is from speaks...”

Train: “John Doe lives 
in Tokyo.”

“...Japanese”

InformativeInformative

Upstream

John Doe

Downstream

Tokyo

Train

Figure 1. Extractive structures describe how LMs can generalize
to facts they are trained on. Finetuning on the fact “John Doe
lives in Tokyo” encodes the association “John Doe”→“Tokyo” in
the weights of informative components. At test time, upstream
structures elicits the fact from informative components by querying
them with the right input (“John Doe”), whereas downstream
structures post-processes the extracted information into the correct
response (“Tokyo”→“Japanese”).

produced by the informative components and post-process
it to produce the correct implication.

We find empirically that in the OLMo language
model (Groeneveld et al., 2024) on the two-hop reasoning
task (Zhong et al., 2023), extractive structures can be lo-
calized to LM components, and are qualitatively consistent
with prior mechanistic analyses of two-hop reasoning (Yang
et al., 2024) (Sec. 5). To localize extractive structures we
develop a set of metrics for deep linear networks (Sec. ??)
and extend them to language models (Sec. ??). Further,
our technique reveals that fact learning occurs in an early
and a late site, each of which enables a different kind of
generalization (Sec. 5.3). This is of independent interest to
the knowledge editing community.

To explain how extractive structures arise, we hypothesize
that the extractive components are learned during pretrain-
ing in the backward pass on implications of facts the model
already knows. This solves the coordination problem: un-
der this hypothesis, the backward pass on facts is free to
encode facts according to an arbitrary schema, as long as
later in training, extractive structures can learn to adapt to
the encoding schema to decode facts.

We validate the hypothesis in a continued pretraining setting
with new implicatures by testing two predictions. First, we
observe a data ordering effect where the model fails at OCR

if all facts occur after their implications during training
(Sec. 6.1). Second, we observe that weight-space arithmetic
can transfer newly learned extractive structures without also
transferring the implications themselves (Sec. 6.2).

Overall, our work takes an empirical, mechanistic approach
towards understanding how language models learn from
their training data. We hope that our extractive structures
framework can provide clarity for future work scoping out
the capabilities and limitations of OCR.

2. Related works
Circuit-based Interpretability Circuit-based inter-
pretability aims to decompose neural networks into compo-
nents that form computational circuits (Cammarata et al.,
2020; Elhage et al., 2021; Wang et al., 2022). These works
often use causal techniques (Vig et al., 2020) to localize com-
ponents (Meng et al., 2022), although gradient-based attribu-
tion scores analogous to Grad-CAM (Selvaraju et al., 2017;
Olah et al., 2018) have seen a recent resurgence (Kramár
et al., 2024; Grosse et al., 2023). Our work adapts these
tools for analyzing components with weight changes.

Fact learning in LMs Fact learning in LMs and its robust-
ness has been studied in the pretraining (Chang et al., 2024;
Kandpal et al., 2023), finetuning (Berglund et al., 2023a;b),
synthetic (Allen-Zhu & Li, 2023; Wang et al., 2024), and
knowledge-editing (Cohen et al., 2024; Onoe et al., 2023)
settings. While earlier works tended to analyze LM gen-
eralization behaviorally, recent works have used influence
functions (Qin et al., 2024) and layer-wise ablations (Zhang
et al., 2024) to characterize generalization. Our work pro-
vides a more fine-grained analysis by proposing concrete
mechanisms for generalization.

Multi-hop reasoning Multi-hop reasoning is a common
LM evaluation task where LMs have to compose several
factual associations together (Zhong et al., 2023). In both
pretrained LMs and LMs trained in grokking settings, re-
searchers have found that LMs serially perform multi-hop
reasoning by latently recalling intermediate hops (Yang
et al., 2024; Wang et al., 2024). We use these results about
trained LMs as a reference point when analyzing LMs’ two-
hop reasoning abilities as they learn new facts.

3. Background
In this section we concretely define OCR, and explain how
two-hop reasoning can be an instance of OCR.

The core phenomenon we study is the observation that
when a pretrained language model is finetuned on a set of
facts F , it can sometimes generalize to implications ImplF .
Concretely, we model each fact F ∈ F as the pair (p, a),
where p is a prompt and a ∈ AF is a continuation of the
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Figure 2. Mean ranks of facts and their implications throughout
finetuning for first-hop and second-hop updates. Lower is better.
Each point represents a training checkpoint, where the top right
point is the initial pretrained LM. The mean ranks of facts and
implications both fall over the course of 8 finetuning epochs, indi-
cating that the LM generalizes to implications despite being only
trained on facts.

First-hop update
Fact (Train) (John Doe lives in, Tokyo)
Impl. (Test) (People in the city John Doe is from speak,

Japanese)

Second-hop update
Fact (Train) (The mayor of Tokyo is, John Doe)
Impl. (Test) (The mayor of the city that contains Senshoji

temple is, John Doe)

Table 1. Illustrative examples from the first-hop update and second-
hop update datasets.

prompt. Similarly, its implication ImplF is also a pair
(p, a), a ∈ AImplF . For example, a fact could be F =
(“John Doe lives in”, “Tokyo”), and ImplF = (“The people
from the city in which John Doe lives speak”, “Japanese”).
Then, the OCR phenomenon is when finetuning the model
with initial weights W on the set F using standard cross-
entropy loss leads to new weights W′ that generalizes to
implications ImplF .

To measure whether a model has generalized to an impli-
cation ImplF = (p, a), we prompt the model with p, and
measure the (0-indexed) rank of the continuation a out of all
relevant continuations AImplF . We use the mean rank when
measuring generalization to a set of implications ImplF .
Similarly, we use the mean rank for facts F to verify that
the LM has indeed learned facts during finetuning.

The main form of implicatures we study relates to two-hop
reasoning. When the LM is taught a novel fact, the LM may
systematically compose it with existing facts to answer two-
hop queries. For example, after teaching the model “John
Doe lives in Tokyo”, the model can compose this fact with
existing knowledge that people in Tokyo speak Japanese to
answer the prompt “The people from the city in which John
Doe lives speak” with “Japanese”.

There are two classes of implicatures with two-hop OCR,

which composes a novel fact with a known fact. The novel
fact could either be the first hop (first-hop update) or the sec-
ond hop (second-hop update) of a two-hop reasoning chain.
We construct synthetic datasets to study both (Sec. 5.1, Ta-
ble 1). Fig. 2 shows that the LM is indeed capable of two-
hop OCR in both settings.

4. Extractive structures framework
This section describes the extractive structures framework
and proposes metrics for identifying components in the
framework in language models.

Broadly speaking, the extractive structures framework views
the ability of the model to know the implication ImplF =
(p, a) as a result of the coordination of three groups of com-
ponents during the forward pass on the prompt p. Specif-
ically, the extractive structures framework posits that the
information about fact F is first saved in a group of infor-
mative components during the training process on the facts
F . Then, when prompted with an implication ImplF, a set
of upstream extractive structures parses the input prompt
p and provide the informative components a set of input
activations that elicits the stored fact F from the informative
component. Finally, a set of downstream extractive struc-
tures processes the recalled fact and ultimately produces the
correct continuation a.

For each of the three groups of components, namely infor-
mative, upstream, and downstream components, we propose
a metric based on a causal intervention on the computational
graph of the language model. To make the metrics easier
to compute, we linearly approximate causal metrics, and
show that the three linearized metrics are first-order pertur-
bations to a Grad-CAM style attribution score (Selvaraju
et al., 2017).

Preliminaries Consider a feed-forward transformer that
takes in inputs x and produces outputs y. For example,
x could be the prompt p of an implication (p, a), and the
outputs y could be a probability distribution over possible
answers. Let the reward R be a real number that captures
the extent to which the model correctly answered the prompt
(e.g. log-probability of a).

Then, following conventions in interpretability literature,
consider a particular component C in the LM, which could
either an MLP or an attention head at a specific layer. Let
zC be its input, yC its output, and WC be its weights so that
yC = fC(zC,WC). The inputs zC to the component is an
intermediate representation that is a function of the input x
to the LM and the weights of the earlier layers Wearly, and
similarly, the final rewardR is dependent of the output of
the component yC, the weights of later layers Wlate, and, due
to skip-connections in transformers, the component inputs
zC. The computational graph is summarized below.
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R Wlate

yC WC

zC Wearly

x

Using this computational graph, we can express precisely
the causal effects we expect each of the three groups of
components to have. Specifically, we fix the input and de-
sired output, and consider the rewardR, and how it changes
under various interventions to the nodes in this graph. We
denote an intervention that sets the value of a node v to
a counterfactual value v′ with v ← v′, and the resultant
reward as R[v ← v′]. Let the original pretrained weights
be denoted as the unprimed W, and the finetuned weights
be the primed W′. The overall idea is that each of the three
groups of components will allow the change in weights to
increase rewards in different ways.

Informative components Intuitively, an informative com-
ponent contains the newly learned knowledge that the rest
of the network extracts. Therefore, if component C is an in-
formative component, we expect setting WC ←W′

C while
leaving all other weights unchanged to improve the reward.
We thus write the informative score for component C as:

IC = R[WC ←W′
C]−R (1)

Downstream components Intuitively, a downstream com-
ponent processes the output containing the newly learned
knowledge into useful output for the current prediction.
Therefore, if component C is a downstream component,
we expect its output yC to help increase reward, but only
if its input zC contains the newly learned knowledge. We
therefore compute the new z′C with the new weights W′

early
and contrast it with the original zC. Specifically, we compute
the downstream score for component C as:

DC = R[yC ← fC(z
′
C,WC)]−R (2)

Upstream components Intuitively, an upstream compo-
nent should process the input into an intermediate repre-
sentation that engages the newly updated weights so as to
retrieve the new information. Therefore, if component C is
an upstream component, we expect its outputs to feed into
later layers to increase reward, but only if the later layers
contain the updated weights. We describe a way to measure
the importance of component C for later layers, and then
identify whether this importance measure increases when
later layers have new weights.

A standard way of measuring importance of a node is
to ablate its value by setting it to a constant, a common
choice being the node’s mean value over some reference
set of inputs (Chan et al., 2022). Therefore, to evaluate
the importance of component C we set its output yC to
some constant value y∗C , and measure the change in reward
R−R[yC ← y∗C ].

We expect upstream components to be comparatively more
important when future layers contain weights that depend on
the outputs of upstream components. We therefore compare
the importance of component C when future layers have up-
dated weights W′

late to when they have the original weights
Wlate. Specifically, the upstream score for component C is:

UC = (R[Wlate ←W′
late]−R[Wlate ←W′

late, yC ← y∗C ])

− (R−R[yC ← y∗C ]) (3)

Linearizing the extractive scores Computing the causal
scores in language models require several passes over the
model, one for each component. One common approxi-
mation (Selvaraju et al., 2017; Kramár et al., 2024) is to
replace the causal interventions with their linear approxi-
mation. Specifically, for any node v in the computational
graph, we approximate

R[v ← v1]−R[v ← v2] ≈
dR
dv

(v1 − v2),

where the derivative can be evaluated at either v1 or v2. We
thus obtain1

IC =
dR
dWC

(W′
C −WC) (4)

DC =
dR
dyc

(fC(z
′
C,WC)− yC) (5)

UC = (
dR
dyC

[Wlate ←W′
late]−

dR
dyC

)(yC − y∗C ). (6)

The three linearized scores can be seen as first order pertur-
bations to a single value. Consider the quantity

RC =
dR
dyC

(f(zC,WC)− y∗C ),

which can be interpreted as an approximation to the effects
of ablating the outputs of component C to the constant y∗C .
Let qy = dR

dyC
and qy′ = dR

dyC
[Wlate ←W′

late]. Then, with the
chain rule, one can rewrite

IC = qyC∇wfC(zC,WC)(W
′
C −WC) (7)

DC = qyC∇zfC(zC,WC)(z
′
C − zC) (8)

UC = (qy′C − qyC)fC(zC,WC) (9)

1The linearized informative score is related to component-wise
influence functions (Grosse et al., 2023).
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Finally, notice that the difference between the primed and
unprimed values δqy, δWC, and δzC correspond to changes
in the late weights Wlate, component weights WC, and early
weights Wearly respectively. We can thus write the change
in reward δRC due to the overall change in weights δW in
terms of first-order perturbations in each of the three sets of
weights, so that with the chain and product rules:

δRC = δqyC(fC(WC, zC)− y∗C )︸ ︷︷ ︸
Upstream score UC

+ qyC(∇WC
fC(WC, zC) δWC)︸ ︷︷ ︸

Informational score IC

+ qyC(∇zCfC(WC, zC) δzC)︸ ︷︷ ︸
Downstream score DC

This interprets the three scores as first-order changes to a
gradient-based attribution score, and suggests that the three
scores ought to be comparable in magnitude.

5. Extractive structures in two-hop reasoning
In this section, we compute the three extractive scores for a
language model on first-hop and second-hop updates, and ar-
gue that the extractive scores are consistent with prior mech-
anistic analysis of two-hop reasoning. We then causally
verify the informative scores, and along the way we find that
fact learning occurs at an early site and a late site, so that the
early site enables first-hop updates and the late site enables
second-hop updates. This last finding may be independently
interesting to the knowledge editing community.

5.1. Setup

Dataset We create two synthetic datasets to study OCR
in two-hop reasoning. We gather a set of 20 cities, together
with an associated language and an associated landmark.
We then gather set of 20 fictitious names, which we pair
randomly with the 20 cities. In first-hop dataset, facts are as-
sociations from names to cities, and implications are queries
about the language associated a person’s city. In the second-
hop dataset, facts are associations from city to names, and
implications are queries about the person associated with the
city a landmark is in. We use a simple template to populate
facts and implications (see Table 1 for examples).

Model We use the OLMo 7B model as the base model.
We use the intermediate training checkpoint right before the
final annealing phase to simulate a continued pretraining
setting where the language model is encountering new facts
in its pretraining.

Training We finetune the model on the set of factsF using
the standard cross-entropy loss. We only include the loss on
answer tokens. We use the Adam optimizer (Kingma & Ba,

2014) for 8 epochs at 3 × 10−6 learning rate, momentum
(0.9, 0.999), batch size 8, with a linear rate decay schedule
with 10% warmup.

5.2. Results

We finetune the model on the first-hop and second-hop facts,
and compute the three extractive scores on their respective
implications (Fig. 3). The most salient observation is that
the informative components on MLPs are mostly localized
to the early/middle layers of the name tokens in first-hop
updates (row 2, column 1), whereas for second-hop they are
mostly localized to the late layers at the last token (row 2,
column 3). The downstream scores are mostly in the late
layers of the last token, although there is some presence
in the middle layers of the name tokens. The upstream
scores are localized to the early layers in first-hop update,
but are instead mostly found in the late layers in the last
token for second-hop updates, right before the informative
components.

The extractive scores are consistent with prior mechanistic
analyses of two-hop reasoning. Yang et al. (2024) found
evidence that, to answer a two-hop query, language models
latently look up the first fact, and then use the result to look
up the second fact. In our setting, both the downstream
components of first-hop updates and the informative com-
ponents of second-hop updates can be interpreted as the
components responsible for recalling the second hop, and
they both point to the last layers at the last token. Similarly,
both the upstream components of second-hop updates and
the informative components of the first-hop updates can be
interpreted as components responsible for recalling the first
hop, and they both point to the early-middle layers of the
landmark/name tokens.

The extractive scores also have suggestive features that are
not yet well understood in mechanistic interpretability. Prior
mechanistic interpretability works on factual recall (Geva
et al., 2023; 2020; Meng et al., 2022) tend to regard MLPs
as associative memories that recall factual information from
their weights, whereas attention heads transfer information
from one token position to another. Consistent with this
view, we find that for first-hop updates, the early-middle
MLP layers are the name tokens are informative. However,
in addition to these MLP components, the attention heads
at the late layers on the last token are also informative,
suggesting that these attention heads may also play a role in
recalling information.

5.3. Causal analysis

We verify the earlier extractive scores with causal experi-
ments, and in so doing identify that fact learning occurs at
an early and a late site. Specifically, the two-hop informative
scores (Fig. 3) suggest that to perform first-hop updates, the

5



How do language models generalize to implications of facts they are trained on?

0

31

Do
wn

st
re

am
First-hop MLP First-hop Attn Second-hop MLP Second-hop Attn

0

31

In
fo

rm
at

iv
e

Th
e

 p
eo

pl
e  in  th
e

 c
ity  X  Y  is

 fr
om

 sp
ea

k

0

31

Up
st

re
am

Th
e

 p
eo

pl
e  in  th
e

 c
ity  X  Y  is

 fr
om

 sp
ea

k

Th
e

 m
ay

or  o
f

 th
e

 c
ity

 th
at

 c
on

ta
in

s  X  Y  is Th
e

 m
ay

or  o
f

 th
e

 c
ity

 th
at

 c
on

ta
in

s  X  Y  is

0.0

0.5

0

1

2

3

0

1

2

0.0

0.5

1.0

1.5

0.00

0.01

0.02

0.000

0.005

0.010

0.0

0.2

0.4

0.000

0.025

0.050

0.075

0.1

0.0

0.1

0.0

0.1

0.2

0.2

0.0

0.2

0.00

0.25

0.50

Figure 3. Extractive scores for the first-hop (left) and second-hop updates (right). Scores are averaged over the dataset.

First-hop Second-hop

Frozen Layers Fact Impl. Fact Impl.

None 0.00 0.00 0.00 1.80
Early 5.10 8.40 0.95 1.85
Late 0.00 0.00 0.10 6.30
All 9.20 9.25 9.10 9.50

Early (pre) 0.00 6.50 0.00 0.50
Late (pre) 0.00 0.10 0.00 6.60

Table 2. Mean-rank of facts and implications when freezing
weights post-training or pre-training. Freezing early layers harm
first-hop OCR but not second-hop OCR, and vice versa for late
layers. ‘None’ and ‘All’ are baselines where we use the full fine-
tuned weights and original weights respectively.

facts should be encoded in the early-middle layers (first 2/3),
whereas to perform second-hop updates, the facts should be
encoded in the late layers (last 1/3).

We test this causally by freezing certain layers of weights
and checking if the model retains its knowledge of facts
and implications. Specifically, we finetune the model to
obtain a weight change as before, but then freeze a subset
of components (either early-middle or late) to their original
weights. This is a direct test of the causal faithfulness of the
informative score. As a secondary test, we instead freeze
the subset of components before finetuning, and re-finetune
the model with restricted set of free parameters. This checks
that the extractive structures are indeed localized to the
components identified by the extractive scores, and do not

vary based on where the training facts are updated.

Our findings confirm that freezing the early-middle lay-
ers harms the first-hop implications but not second-hop
implications, and vice versa for the late layers (Table 2).
Specifically, freezing the early-middle layers increases the
mean-rank of first-hop implications from 0.00 to 8.40, but
the second-hop implications from 1.80 to 1.85, and freezing
late layers leaves the first-hop implications unchanged at
0.00, whereas the second-hop implications increased from
1.80 to 6.30. This validates that the informative score cor-
rectly captures where the salient information is stored.

In the setting where the weights are frozen before finetuning,
we see that the model adapts to instead store facts at different
layers, but this is insufficient to recover OCR. If the early-
middle layers are frozen post-finetuning, the model forgets a
lot of first-hop facts (5.10 mean rank), but if they are frozen
pre-finetuning, the model has a chance to instead store the
facts at the late layers, and retains the first-hop facts (0.00
mean rank). However, this adaptation is insufficient to also
recover first-hop implications (6.50 mean rank), because the
downstream components that depend on the new first-hop
facts are unable to utilize the first-hop facts stored late in the
model. In contrast, freezing early-middle layers still allow
second-hop implications to be learned (0.50 mean rank).
Conversely, freezing late layers pre-finetuning still learns
first-hop implications (0.10 mean rank) but not second-op
implications (6.60 mean rank).

Our results suggest that while fact learning stores facts at
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many points in the LM, storing facts at different points in
the network enable different forms of generalization. Early
knowledge editing works (Meng et al., 2022) suggested that
facts are stored in a localized set of components, but later
work (Hase et al., 2023) found that facts can be edited at any
point in the LM. Our results suggests a more nuanced pic-
ture: facts can indeed be stored at any point in the network
(since “Early (pre)” and “Late (pre)” both learn facts well);
however, storing facts in the early layers enable first-hop
updates, whereas the late layers enable second-hop updates.

6. Origins of extractive structures
We now turn our attention to the coordination problem be-
tween the backward pass on the train fact F and the forward
pass on the implication ImplF. Is it just a coincidence that
the backward pass modifies the weights in such a way that
extractive components can exploit them?

We hypothesize that the coordination problem is solved
by the backward passes on implications during training re-
inforcing extractive structures. Specifically, suppose the
model already knows a fact F and then later encounters its
implication ImplF ; this could happen by chance from train-
ing data shuffling. Then, training on the implication creates
training signals for the formation of extractive structures
that seek out the known fact F and returns ImplF . This
solves the coordination problem because the initial learning
of facts has relatively large freedom to encode the informa-
tion, since the subsequent backward pass on implications
can adapt to the choice of information encoding.

This hypothesis has two testable implications: a data order-
ing effect (Sec. 6.1) and the ability to graft weight changes
corresponding to new extractive structures without also
grafting the implications themselves (Sec. 6.2).

6.1. Data ordering

The hypothesis predicts a data ordering effect during pre-
training, where if all the facts appear after their implications,
then the model cannot learn extractive structures, and hence
cannot later generalize to implications of new facts. Con-
versely, if all facts precede their implications, then extractive
structures may form and later enable OCR.

At a high level, we study the how pretraining learns im-
plicatures by creating a dataset with novel implicatures,
and studying how finetuning a pretrained model on this
dataset creates new extractive structures for the new impli-
catures. This finetuning process simulates what would have
happened if the pretraining data had contained these novel
implicatures, and for clarity we call this phase continued
pretraining. Then, if continued pretraining successfully cre-
ated new extractive structures, we expect finetuning the new
model on new facts would cause it to generalize to their
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Figure 4. Mean ranks for facts and their implicatures while con-
tinued pretraining on training facts Ftrain (left), and while subse-
quently finetuning on test facts Ftest (right).
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Figure 5. Visualization of grafting procedure

implications according to the newly learned implicatures.

Setup We create a dataset of novel implicatures. Dif-
ferent from the earlier setting where the associations un-
derlying implicatures are already known (e.g. “Tokyo”→
“Japanese”), we aim to teach completely new implicatures
involving new relations. Specifically, we create the “dax”
and “wug” relations that associate a person with a city or
an animal respectively. We then assign each city a random
animal (e.g. “Tokyo”→ “tiger”) so that if “John Doe dax
Tokyo” is true, then so is “John Doe wug the tiger”. Con-
cretely, we construct a set of 80 facts Ftrain by randomly
assigning to each of 80 names one of 20 cities, and a set of
80 corresponding implications by using the assigned city’s
animal. To evaluate OCR ability, we additionally create a
test dataset of 20 facts Ftest and their implications by pairing
20 new names with the 20 cities/animals.

We continually pretrain the model on the training facts and
their implications Ftrain ∪ ImplFtrain and test if data order-
ing affects its ability to perform OCR on the test facts Ftest.
Specifically, we investigate three orderings of the training
data: facts-then-implications, implications-then-facts, and
where facts and implications are shuffled together. To eval-
uate OCR, we finetune the model on test facts Ftest, and
measure its generalization to the test implications ImplFtest.

Results Fig. 4 (right) confirms the prediction that the
model can perform OCR only in the data orderings where
facts precede implications and where they are mixed, but not
where implications precede facts. Importantly, this happens
despite the fact that the model successfully learns the train-
ing facts and implications in all three data orderings (Fig. 4
left). This highlights that the internal extractive structures
can affect OCR generalization ability in ways that are not
captured by conventional metrics.
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Weights ImplF ′ ImplF F ′

WF′ 9.13 8.55 0.00
Wgraft 1.13 3.30 0.10
W̃graft 8.38 0.43 0.32

Table 3. Mean ranks for facts and their implicatures while training
on training facts (left), and while subsequently training on test
facts (right).

6.2. Weight grafting

Because extractive structures are localized, we might ex-
pect weight-space arithmetic to transfer newly formed
extractive components without transferring the underly-
ing facts. Specifically, suppose we first teach the model
facts F , to produce weights WF , and then teach the
model extractive components by training on implications
ImplF to produce weights WF,ImplF (Fig. 5). Then,
the difference in weights WF,ImplF −WF ought to be
the weight changes needed to create extractive compo-
nents, and should be localized to the extractive compo-
nents. Therefore, if we instead train the model on a coun-
terfactual set of facts F ′ to produce WF ′ , and graft the
weight difference over to produce the weights Wgraft =
WF ′ + WF,ImplF −WF , we should have a model that
has learned the counterfactual implications ImplF ′ instead
of the original implications ImplF , because we should
have grafted over the extractive components and not the
original implications themselves. Conversely, if instead of
grafting over the extractive components WF,ImplF −WF ,
we graft over the implications WImplF −W to produce
W̃graft = WF ′ +WImplF −W, we expect to have trans-
ferred the implications ImplF but not the extractive com-
ponents for producing ImplF ′.

We further verify that the grafted weights do indeed con-
tain the extractive components by measuring their extractive
scores in two different manners and correlating them. First,
suppose the grafted weights contain downstream compo-
nents. Then, we expect the same downstream components
to be active in helping WF,ImplF perform OCR when fine-
tuned on test facts, and be identifiable with the downstream
score. The second approach considers the grafting update
WF ′ → Wgraft as an update that teaches the model the
implications ImplF ′. We therefore expect the downstream
components to be identifiable with the informative score of
this update.

Setup We use the same train and test datasets as the data
ordering experiment (Sec. 6.1), but additionally create a
counterfactual version of the train dataset by re-assigning
random cities/animals to the 80 names.

Results Table 3 confirms the weight grafting hypoth-
esis that extractive components for producing implica-
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Figure 6. Correlation between downstream extractive scores and
informative scores for MLPs (left) and attention heads (right).

tions can be transferrred without the implications them-
selves. We observe that grafting over the weight difference
WF,ImplF −WF has the main effect of lowering the mean
rank for counterfactual implications ImplF ′ from 9.13 to
1.13, while secondarily lowering the mean rank for the orig-
inal implications ImplF by a smaller extent to 3.30. In
contrast, grafting over WImplF −W has the main effect
of transferring implications ImplF (8.55→ 0.43), but not
the extractive structures for deducing implications ImplF ′

(9.13 → 8.38). However, we note that while the grafted
weights Wgraft primarily contain the extractive structures
for ImplF ′, they do nonetheless contain some memorized
original implications ImplF , suggesting that when trained
on implications, models both memorize the implications
and learn extractive structures that extract them from known
facts.

To further confirm that the grafted weights contain the down-
stream components, we correlate the two approaches for
localizing them (Fig. 6). We find that for both MLP compo-
nents and attention heads, there is a statistically significant
positive correlation between the two metrics. However, the
Pearson correlation is small, suggesting that the two metrics
do not align perfectly.

7. Conclusion
This work studies the empirical phenomenon that pretrained
language models can some times generalize to implications
of facts they are trained on. To this end, we develop the
extractive structures framework for explaining how the for-
ward pass on implications can extract and process facts
stored during training. Additionally, we find evidence that
extractive components are learned during pretraining, where
training on implications of already known facts creates a
learning signal to form extractive components.

We hope that our work will enable further analyses of em-
pirical deep learning phenomena, which could lead to a
general theory of deep learning generalization. For example,
identifying sufficient conditions for extractive structures or
classifying all possible extractive structures could provide
strong bounds on what forms of generalizations are possible.
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This would be an ambitious result of relevance to under-
standing the success of deep learning and to characterize
their emergent behaviors.

Impact Statement
This paper aims to deepen our understanding of empirical
deep learning phenomena. We believe such understanding
may potentially lead to stronger theories of deep learning
generalization, which could help society develop and deploy
deep learning systems more safely.
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